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Abstract: The idea of beams on elastic foundation has been widely applied in the design of geotechnical structures such 

railway tracks, rigid and flexible highway pavement, building and habour structures. Winkler was the first to present the 

analysis of a beam on an elastic foundation for the analysis of railroad track deflection, based on the premise that the 

foundation reaction forces are proportionate to the deflection of the beam at that location. An elastic material regains its 

original shape on unloading whereas plastic material do not; an elastoplastic material undergoes coupled elastic (recoverable) 

and plastic (unrecoverable) deformations during loading and unloading. Soils are really elastoplastic material. At stresses 

below the yield stresses soil to responds elastically, whereas at stresses beyond yield stress soil to respond elastoplastically. 

The conventional analysis of plate on elastic foundation is inadequate which necessitated this study. This study focuses on the 

analysis of a beam on an elastoplastic foundation. Though the derivation started with winkler’s model, elastoplastic condition 

was considered. It was also assumed that the soil is homogeneous and isotropic; and that the beam on elastoplastic system is 

symmetrical with law of superposition applying. The derivation was further confirmed using Buckingham Pi theorem for 

dimensional analysis. 
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1. Introduction 

There are various cases in geotechnical engineering where 

the engineer must size the footings using simple empirical 

approaches to transmit loads from the superstructure to the 

soil beneath. While acceptable bearing capacity value 

approaches are used to design spot footings, most engineers 

use a similar method to build continuous footings. The 

computation of the vertical displacements of the footing 

along the longitudinal direction becomes important when 

continuous footings carry distributed and concentrated loads 

to evaluate the probable differential settlements of the 

footing. If we suppose that the continuous footing behaves 

like a beam, we can analyze it using the beam-on-elastic-

foundation model. The loads on the beam are transferred 

from the beam and into the soil in a complex manner 

depending on the longitudinal stiffness of the beam. In other 

words, the behaviour of the beam under load is determined 

by both the soil’s material properties and its own stiffness 

characteristics. The beam on elastic foundation problem is 

one of these soil-structure interaction problems [1, 2]. Its 

solution requires the conceptualization of one, the 

mechanical behavior of the beam, two, the mechanical 

behavior of the soil as elastic subgrade and three, the form of 

interaction between the beam and the soil [3]. 

The idea of beams on elastic foundation has been widely 

applied in the sub-disciplines of civil engineering such as 

geotechnical engineering, structural engineering [4], highway 

pavement engineering, railway engineering [5], machine 

building factory [6] and retaining structures [7]. Past studies 

are basically interested in elastic deformation of the beam on 

elastic foundation model using mathematical methods solved 

using different numerical and analytical methods. 

Winkler [8] was the first to present the analysis of a beam 

on an elastic foundation for the analysis of railroad track 

deflection, based on the premise that the foundation reaction 

forces are proportionate to the deflection of the beam at that 

location. The relationship between the deflection �	 and the 
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load q can be described using equation 1. 

�� ���
��� + 
� = �                               (1) 

For 0 < � < � 

The parameter for the spring constant k is called the 

modulus of subgrade reaction of the soil in this equation, and 

El is the beam stiffness. Figure 1 depicts the deformation 

pattern of a loaded beam for this model. 

 
Figure 1. Winkles model for deformation loaded beams. 

An elastic material recovers its original dimensions on 

unloading whereas plastic material do not; an elastoplastic 

material undergoes both elastic (recoverable) and plastic 

(unrecoverable) deformations during loading and unloading. 

Soils are truly elastoplastic material [9-11]. At small strains 

soil behave like an elastic material. Succinctly put, stresses 

below the yield stresses cause the soil to respond elastically, 

wheresas, stresses beyong yield stress cause soil to respond 

elastoplastically [12]. 

To the best of the researchers' knowledge, no research has 

been done on a beam on elastoplastic soil for a laterally 

positioned foundation. As a result, this study focuses on the 

analysis of a beam on an elastoplastic foundation, which 

differs from the traditional analysis of a beam on an elastic 

foundation. 

2. Methodology 

2.1. Model Assumption 

With respect to modelling beam on elastoplastic 

foundation the following assumptions are made: 

i. Winkler model is adopted excepted that soil is assumed 

to be elastoplastic. 

ii. The sub-structural soil is homogeneous and isotropic. 

iii. The system of plate on elastoplastic is symmetrical. 

iv. The principle of superposition is valid. 

 
Figure 2. Elasto-plastic Winkler spring model. 

 
Figure 3. Beam on elastoplastic foundation. 

2.2. Model Derivation 

For beam on elastic foundation, the stresses in the soil and 

deformation can be derived by using an elastoplastic winkler 

spring model proposed by [13]. The model is shown in 

Figure 2 in which K is the modulus of sub grade reaction; �� 

= yield soil resistance per unit depth of the beam; and ��  = 

yield displacement of the soil. 

Considering infinitesimal elements enclosed between two 

vertical cross sections a distance �� 	apart on the beam being 

considered. Assuming that this element was taken from a part 

where beam was acted upon by a distributed loading q. The 

forces transferred to such element are shown in Figure 4. 

 
Figure 4. Elemental section of the beam. 

The shearing force acting upward, Q, to the left of the 

element is taken to be positive, same is the corresponding 

bending moment, M, that is a clockwise moment acting from 

the left on the element. These positive directions for Q and M 

will be observed in all derivations taking into account the 

equilibrium of the element in Figure 4, we find that the 

summation of the vertical forces is 

� − �� + ��� + 
��� − ��� = 0 

Differentiating we have 

��
�� = 
� − �                                 (2) 

Recall that � = ��
��  

We have that 
��
�� = ���

��� = 
� − �                 (3) 

Using the known differential equation of a beam in 

bending 
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�� ����
���� = −� 

And differentiating twice, we have 

�� ����
��� = ���

���                                 (4) 

Substituting equation (3) into equation (4) we have: 

�� ����
��� = 	−
� + �                            (5) 

According to [14] equation (5) is the differential equation 

for the deflection curve of a beam supported on an elastic 

foundation. Along the unloaded parts of the beam, where there 

is no distributed load q = 0, and the equation takes the form 

�� ����
��� = 	−
�                               (6) 

It will be adequate to consider only the general solution of 

equation (6) from which solutions will be obtained as well 

for cases implied in (5) by applying suitable particular 

integral corresponding to q in (5). 

Substituting � = !"�  in (2), we have the characteristic 

equation 

#$ = − %
�� 

Which has a complex root 

#& = −#' = ( %
4��*

& $+ �1 + -� = .�1 + -� 

#� = −#$ = ( %
4��*

& $+ �−1 + -� = .�−1 + -� 
The general solution of (6) gives 

� = /&!"0� + /�!"�� + /'!"1� + /$!"��          (7) 

Where 

. = � 2
$34 

& $+
                                   (8) 

Multiplying both sides by L 

.� = �%�$4��� 

!56� = 789.� + -9-:.� 

!;56� = 789.� − -9-:.� 

Then introducing new constants C1, C2, C3, C4, where 

�/& + /$� = <&, -�/& − /$� = <� 

�/� + /'� = <', -�/� − /'� = <$ 

Rewriting equation (7) 

� = !6��<&789.� + <�9-:.�� + !;6��<'789.� + <$9-:.��                                                 (9) 

λ include the flexural rigidity of the beam as well as 

elasticity of the supporting soil. Owing to this, λ is referred to 

as the characteristic of the model, and since its dimension is 

inverse of length, the parameter 1 .+  is called dicharacteristic 

length. Consequently .� will be a unity. 

Equation (9) represents the general solution for the deflection 

line of a beam supported on an elastic foundation and subjected 

to transverse bending forces, but without loading. An additional 

term is required where there is distributed load. 

Differentiating equation (9) we have 

1
.
��
�� = !6�><&�789.� + 9-:.�� + <��789.� + 9-:.��? − !6�><'�789.� + 9-:.�� − <$�789.� − 9-:.��? 

1
2.�

���
��� = −!6��<&9-:.� − <�789.�� + !6��<'9-:.� − <$789.�� 

&
�6�

���
��� = −!6�><&�789.� + 9-:.�� − <��789.� − 9-:.��? + !;6�><'�789.� − 9-:.�� + <$�789.� + 9-:.��?      (10) 

From basic strength of material 

��
�� = tan � ,−�� ���

��� = �	D:� − �� �1�
��1 = �        (11) 

The general expression for the slope � , the bending 

moment � and the shearing force Q can be obtained from 

equation (10). The magnitude of stress in the foundation can 

be found from equation (9) to be E = 
�. 
In applying the general equation, the next step is to obtain 

the constants of integration C1, C2, C3 and C4. The integration 

constant depends on how the beam is subjected to the 

loading, having constant value along each portion of the 

beam. Their values can be derived from the conditions at the 

end of the continuous part. 

Out of �, �,�	D:�	�  characterizing the condition at the 

end, two are normally known at each end from which 

adequate results are provided for the determination of the 

constants C. 

Where 

<& = !;6��789.� + sin .��                   (12) 

<� = !;6� sin .�                            (13) 

<' = !;6��789.� − sin .��                   (14) 

<$ = !;6� cos .�	                            (15) 
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a) For concentrated load V at centre: 

K!LM!7N-8:	��� = O6P0
�2Q                         (16) 

b) Moment Mo at centre 

K!LM!7N-8:	��� = �R6�P�
2Q                       (17) 

c) Concentrated load V at free end: 

K!LM!7N-8:	��� = �O6P�
2Q                        (18) 

d) Moment Mo at free end 

K!LM!7N-8:	��� = ;��R6�P1
2Q                      (19) 

2.3. Considering Elastoplastic Condition 

When unloaded, an elastic material returns to its original 

proportions; when loaded, an elastomeric material deforms 

both elastically (recoverable) and plastically 

(unrecoverable). Elastoplastic materials include soils. The 

behavior of soil changes from being elastic at low strains to 

becoming elastic at higher strains. The yield surface is the 

point at which a soil gives under the applied loads. The soil 

responds elastically to stresses that are lower than the yield 

stress. The soil reacts in an elastoplastic manner to stresses 

above the yield stress [12]. 

Elasto-plastic behaviour of soil can be modelled using 2 

different models, that is, simple constitutive model and 

advanced constitutive model [15]. Three types of plastic 

behaviour are known: perfect plasticity, strain hardening and 

softening plasticity. The models assume elastic behaviour 

before yield and can therefore couple the benefits of elastic 

and plastic behaviour. 

The stress, q, due to soil on unit width of the foundation is 

given as 

� = 
�S�Q                               (20) 

Where k, a and b are constants. 

According to [13], the recommended values of c and d 

respectively are 1 and 0.5. 

Solution of equation (1) with q given by equation (20) is 

tedious, but plausible due to non-linear nature of the 

relationship. 

The form of the equation (3.12) is similar to the one 

suggested by [16] for cohesive soils (curve a of Figure 5). 

The curve is defined by 

T = U�7 + �T�                             (21) 

Where σ is the stress at any strain. ε, a and b are also 

constants, where 7 = 1 �+  and � = &
VWXY 

Simple forms as equation (20) and (21) when incorporated 

in equation (1) results to 

� = 
��Z.[                                  (22) 

U = \ �7 + �\�⁄                                      (23) 

Such mathematical complexities that provides direct 

solution of equation (1) is trivial. Linearizing curve ‘a’ from 

stress-strain behaviour of cohesive soil in Figure 5 gives rise 

to curve ‘b’ as previously demonstrated by [17] which is 

described by 

� = 
�	-L	� ≤ �_8`	� > �"S�                      (24) 

� = �"S� 	-L	� > �_ 

Where �"S� 	is the yield stress and�_ = �"S� 
⁄ . Equations 

(24) describe an elasto-plastic material. A material that is elastic 

upto a stress level, �"S�, and deforms plastically once the stress 

level attains �"S� . Interestinly, as the gradient of the curve tends 

to zero, the rigidity of the soil tends to zero, and that is the major 

reason �� is not present in the equation. 

 
Figure 5. Stress-strain relations of soil (Source: Madhav, 1971). 
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3. Results 

Using Buckingham Pi theorem for dimensional analysis to 

check if Equation 24 can take another important parameter E. 

b = �S�Q�c%                                 (25) 

b = ���;&d;��S���Q���;&d;��c���;�d;��        (26) 

�: D + 7 + 1 

�:−D + f − 7 

d:−2D − 27 − 2                                 (27) 

Equation 27 has no solution showing that at this point, 

elastic modulus cannot be part of the equation. 

Then subjecting Equation 24 to the same Buckingham Pi 

theorem for dimensional analysis for quality control and 

homogeneity test, we have; 

b = �S�Q%                                (28) 

b = ���;&d;��S���Q���;�d;��                (29) 

�: D + 1 

�:−D + f − 2 

d:−2D − 2                                   (30) 

Solving equation 30 we have that D = −1	D:�	f =1	`!9gMN-:h	N8: 
b = i�

j                                       (31) 

Equation 31 confirms the basic validity of Equation 24.  

4. Conclusion 

Given that soil is an elastoplastic by nature, taking into 

account the plate-foundation system as a beam on an 

elastoplastic foundation ensures better geotechnical structure 

design that will withstand the test of time. Consequently, 

designing foundation as a beam on elastic foundation results 

to false economy. Anything that happens to the system 

beyond its yield stress will result to settlement beyond 

acceptable limit or even lead to total collapse. Therefore, to 

avoid these consequences, it is relatively economical and safe 

to design foundation as beam on elastoplastic foundation. 
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