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Abstract: Finite elements and solution methods of nonlinear equations in combination with high-performance computing 
technology make it possible to perform analysis of large and complex systems taking into account nonlinear deformation of the 
material. However, the applicable standard methods of calculation are presented on the cross-section of the element. To fill this 
gap, the authors propose a method of modeling of concrete finite element, based on existing norms and state standards. The 
authors propose to take into account the destruction of elements in the treatment process. In this case, the nodal reaction of 
destroyed elements are applied as external load. Modeling of damage to concrete cube press. A comparison of different theories 
of strength for the calculation of the equivalent stress. As a skeletal chart selected state diagram with explicit separation of 
plastic and elastic deformations. Diagrams of deformation of the cross section of the cube in the process of loading the 
Deformation model. Identified areas of damage to concrete cube when reaching the ultimate strain. Defined theory of strength 
and the model that best reflects actual stress - deformation of concrete during the treatment process. The proposed method can 
be applied for numerical analysis of reinforced concrete structures by finite element method. 
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1. Introduction 

The relationship between static loads and displacements of 
a building structure in the general case of small 
displacements can be expressed by the equation [1]: 
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where y is the displacement of nodes, P is the vector of nodal 
loads, and F is the vector of nodal reactions. 

It is easy to see that with the linear reaction — 
displacement relationship F(y)=R y, equation (1) degenerates 
into the well-known static equation. Equation (1) is adequate 
if there is no brittle destruction of the elements during the 
action. If the material of the structure is destroyed during 
loading, then the nodal reactions of the destroyed elements 
are transmitted as an external load and equation (1) is 
converted to the form: 
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where Fp is the nodal reactions of the elements at the moment 
of destruction. 

2. Methods 

To integrate equations (1) and (2), it is necessary to 
explicitly represent the function F(y). This function can be 
obtained from the function σ(ε) by the finite element method. 
The strain-stress ratio is constructed based on the state 
diagram of the uniaxial stress state. The most commonly used 
diagram is one in which elastic and plastic deformations are 
clearly separated [2-4]. 
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where η is the fraction of plastic deformation, m is the 
nonlinearity parameter. The principles for determining these 
parameters are described in [2]. 

To calculate the equivalent stresses corresponding to the 
uniaxial stress state, various models corresponding to a 
particular strength theory are used. On the basis of these 
models, various stress surfaces can be constructed. Young 
and Burzynski [5, 6] proposed a dependence describing all 
known stress surfaces satisfying the Drukker postulate [7]. 
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where I1 is the first invariant of the stress tensor, J2 is the 
second invariant of the stress deviator, γ1, γ2 ∈  [0, 1] is 
parameters that depend on the applied strength theory, σe is 
the stress of the uniaxial state is equivalent to the volumetric 
stress state. 

All existing models (strength theories) do not take into 
account the nature of the nonlinearity of the state diagram. At 
best, different compression and extension limits are taken 
into account. We propose to determine the equivalent voltage 
from the condition of equality of the energies of the uniaxial 
and triaxial stress states. When using the dependence (3), the 
equivalent voltage can be determined from the condition: 
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where W3 is the deformation energy of the triaxial stress state, 
calculated during the impact. The expression on the right side 
is the value of the total strain energy of the uniaxial stress 
state. 

3. Results and Discussions 

To compare different approaches, a numerical experiment 
of concrete cube destruction was performed. The cube was 
modeled by tetrahedra with a linear shape function. The 
advantages of a tetrahedron with a linear function over other 
forms are in two aspects. First, the stresses and deformations 
are constant within the finite element, which makes it very 
easy to determine the plastic deformations and the moment of 
failure. The second aspect is that the values of the 
coefficients of the shape function can be quite simply 
obtained in the global system of geometric coordinates from 
the matrix equation: 

XA=E 

where A is the matrix of coefficients of the shape functions, X 
is the coordinates of the nodes in the global coordinate 
system and the unit first column, E is the unit matrix. The 
dimension of all the matrices is 4x4. 

The disadvantage of four nodal volume elements is their 
large number to obtain acceptable accuracy. 

The following models (strength theories) are considered. 
1. Huber-Mises flow condition [8]: γ1=γ2=0 in formula (4). 

2. The Balandin model [9]: γ1=1 – χ, γ2=0. 
3. The Mirolyubov / Drukker-Prager model [10]: γ1=γ2=(1 

– χ)/2. 
4. Model of the total strain energy. 
5. The model proposed by the authors. 
In the Balandin and Mirolyubov models χ=Rbt / Rb. 
To conduct numerical experiments, a program was 

developed that implements the described algorithm. The article 
considers the deformation loading that simulates the 
destruction of a concrete cube in a press according to GOST 
10180-2012 [11]. Material characteristics: Class B30 concrete 
E=32500 МПа, Rb=30 МPa, Rbt=3 МPа, maximum total strain 
under short-term loading ε=0.0035 [12]. The loading process 
was carried out in 20 steps. When the final element reached the 
maximum strain, its rigidity was reset to zero. The number of 
elements in the numerical experiment was 24000. 

Two variants of the calculation were performed in accordance 
with equations (1) and (2). For each variant, a diagram of the 
deformation of the cross-section of the cube was constructed. 
The stress is calculated as the sum of the reactions of the surface 
nodes related to the cross-sectional area of the cube. 
Deformations correspond to the movements of the press plate, 
stresses correspond to the pressure of the press. 

Figure 1 shows a diagram of the deformation of the cube 
section in accordance with equation (1). During the action, 
when the limit deformations of the final element are reached, 
no destruction occurs. In this case, an unlimited plastic flow 
occurs at a constant voltage for all the considered models. 
For models 1 and 5, the diagrams are almost the same. For all 
the models considered, the finite element deformation 
diagrams strictly correspond to the dependence (3). 

 
Figure 1. State diagram (1) for unlimited plastic flow. 

Figure 2 shows a diagram of the deformation of the cube 
section in accordance with equation (2). When a finite 
element is destroyed, its nodal reactions are added to the 
right side of equation (2). As some finite elements are 
destroyed, the unloading of adjacent elements is observed. In 
the deformation diagram, this circumstance is manifested by 
the appearance of a descending branch for all the models 
considered without exception. In Figures 1 and 2, the 
numbers indicate the models in accordance with the order of 
their description at the beginning of the article. 

The maximum stresses in the cross section are shown in 
the table. 

Maximum stresses achieved under strain loading, MPa. 
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Table 1. Maximum stresses in cross section. 

Model 1. Mises 2. Balandin 3. Mirolyubov 4. The total ener. 5. Authors 

Plastic (1) 30.44 23.99 28.37 29.77 30.90 
Destruction (2) 29.48 22.07 26.22 28.30 29.73 

 

 
Figure 2. Diagram of the state at the destruction of the CE in accordance 

with equation (2). 

 
Figure 3. Distribution of equivalent stresses over the cube cross-section 

under deformation of 0.0025. 1 — areas of failure, 2 — areas of discharge, 3 

— areas of maximum stresses. 

Figure 3 shows the stress distribution in the diagonal 
section of the cube when the strain reaches 0.0025 — the 
beginning of the fracture. The distribution is presented for the 
model proposed by the authors. In models 1, 4, and 5, the 
destruction starts at the corners of the cube. In models 2 and 
3, the destruction starts in the center. As the deformations 
increase, the development of the maximum stress regions 
occurs from the corners to the center for models 1, 4, 5, or 
from the center to the corners for models 2 and 3. 

Figure 4 shows the deformation diagrams of the finite 
elements in the characteristic regions in accordance with 
equation (2). In the process of loading until the moment of 
destruction, the deformation diagrams for all FE coincide. 
When a part of the FE is destroyed, the under-stressed areas 
adjacent to them are partially unloaded. When applying the 
model proposed by the authors, the unloaded elements are 
loaded with the reverse sign. As a result, the elements 
adjacent to the vertical faces are destroyed by tensile stresses. 
Figure 5 shows the stress distributions at the moment of 

complete failure when the cube deformation reaches 0.0035. 

 
Figure 4. Finite element deformation diagrams: 1 — destroyed element, 2 — 

unloaded element, 3 — maximum stresses at the moment of destruction. 

 
Figure 5. The fracture under deformation is 0.0035. a, b — equation (1), c, d — 

equation (2), a, c — the model proposed by the authors, b, d — the Huber – Mises 

theory. 1 — zone of plastic flow (a, b) / destruction of compressed concrete (c, d), 

2 – zone of unloading, 3 — zone of destruction of stretched concrete. 

4. Conclusion 

1. The models of Mises, Mirolyubov and Balandin give 
underestimated results on stresses and deformations 
during failure. At the same time, the Mirolyubov and 
Balandin models significantly depend on the 
tension/compression ratio. 

2. The descending branch of the deformation diagram for 
the section as a whole appears as a result of partial 
destruction of the total volume during loading. 

3. When using equation (2), when modeling concrete in 
the skeletal diagram (3), it is necessary to use the cubic, 
rather than prismatic, strength of the concrete. 

4. For modeling concrete by the finite element method, the 
most adequate models are the total energy models and 
the ones proposed by the authors-4 and 5. 
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