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Abstract: In this paper we have proved the approximating solutions of the nonlinear first order abstract measure differential 

equation by using Dhage’s iteration method. The main result is based on the iteration method included in the hybrid fixed point 

theorem in a partially ordered normed linear space. Also we have solved an example for the applicability of given results in the 

paper. Sharma [2] initiated the study of nonlinear abstract differential equations and some basic results concerning the 

existence of solutions for such equations. Later, such equations were studied by various authors for different aspects of the 

solutions under continuous and discontinuous nonlinearities. The study of fixed point theorem for contraction mappings in 

partial ordered metric space is initiated by different authors. The study of hybrid fixed point theorem in partially ordered metric 

space is initiated by Dhage with applications to nonlinear differential and integral equations. The iteration method is also 

embodied in hybrid fixed point theorem in partially ordered spaces by Dhage [12]. The Dhage iteration method is a powerful 

tool for proving the existence and approximating results for nonlinear measure differential equations. The approximation of the 

solutions are obtained under weaker mixed partial continuity and partial Lipschitz conditions. In this paper we adopted this 

iteration method technique for abstract measure differential equations. 

Keywords: Abstract Measure Differential Equation, Dhage Iteration Method, Existence Theorem, Extremal Solutions, 

Approximation of Solution, Hybrid Fixed Point Theorem 

 

1. Introduction 

The abstract measure differential equations involve the 

derivative of the unknown set-function with respect to the 

 σ-finite complete measure. Some of the abstract measure 

differential equations have been studied in a series of papers 

by Joshi [3], Shendge and Joshi [4], Dhage [14, 15], Dhage et 

al. [6] and Dhage and Bellale [9, 10] and Suryawanshi and 

bellale [17] for different aspects of the solutions. The fixed 

point theorems so far used in the above papers of Dhage [15], 

Joshi [6], Bellale [13] study the abstract measure integro 

differential equation and existence theorem. This is a required 

condition and recently, the authors in Dhage [16], Suryawanshi 

and Bellale [18] have proved the existence and uniqueness 

results for abstract measure differential equations. Here our 

approach is different from that of Sharma [2] and Joshi [3]. 

The results of this paper complement and generalize the results 

of the above-mentioned papers on abstract measure differential 

equations under weaker conditions. 

The perturbed ordinary differential equations have been 

treated in Krasnoselskii [1] and it is mentioned that the 

inverse of such equations gets the sum of two operators in 

appropriate function spaces. The Krasnoselskii [1] fixed 

point theorem is useful for proving the existence results for 

such perturbed differential equations under mixed 

geometrical and topological conditions on the nonlinearities 

involved in them. 

2. Preliminaries 

A mapping if there exists a continuous and non-decreasing 

function : R R
+ +φ → such that 
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|| || (|| ||)Tx Ty x y− ≤ φ −
 
for all ,x y X∈ , where (0) 0φ = . 

In particular if ,0,)( >αα=φ rr T is called a Lipschitz 

function with a Lipschitz constant α . Further if α < 1, then T 

is called a contraction on X with the contraction constant α . 

Let X be a Banach space and let :T X X→ , T is called 

compact if ( )T X is a compact subset of X.T is called totally 

bounded if for any bounded subset S of X, T(S) is a bounded 

subset of X.T is called completely continuous if T is continuous 

and bounded on X. Every compact operator is totally bounded, 

but the converse may not be true, however, two notions are 

equivalent on bounded subsets of X. The details of different 

types of nonlinear contraction, compact and completely 

continuous operators appear in Granas and Dugundji [8]. 

3. Statement of the Problem 

LetX be a real Banach algebra with a convenient norm 

||.|| . Let ,x y X∈ . Then the line segment xy  in X is 

defined by 

{ ( ),0 1}xy z X z x r y x r= ∈ | = + − ≤ ≤         (1) 

Let 0x X∈ be a fixed point and z X∈ . Then for any 

0x x z∈ , we define the sets Sx and xS in X by 

{ | 1},
x

S rx r= −∞ < <                        (2) 

and 

{ | 1}xS rx r= −∞ < ≤                         (3) 

Let 
1 2,x x xy∈  be arbitrary. We say 21 xx < if 

1 2x xS S⊂ , 

or equivalently, 
0 1 0 2x x x x⊂ . In this case we also write 

2 1x x> . 

Let M denote the σ-algebra of all subsets of X such that 

(X, M) is a measurable space. Let ca(X, M) be the space of 

all vector measures (real signed measures) and define a norm 

|| · || on ca(X, M) by 

||p|| = |p|(X)                               (4) 

where |p| is a total variation measure of p and is given by 

1

| | ( ) sup | ( ) |, ,
i i

i

p X p E E X
∞

=

= ⊂∑                 (5) 

Where the supremum is taken over all possible partitions 

{ : }iE i N∈  of X. It is known that ca(X,M) is a Banach space 

with respect to the norm ||.|| given by (4). 

Let µ be a σ-finite positive measure on X, and let

( , )p ca X M∈ . We say p is absolutely continuous with 

respect to the measure µ if µ (E) = 0 implies p(E) = 0 for 

some E M∈ . In this case we also write p << µ . 

Let 0x X∈ be fixed and let M0 denote the σ-algebra on 

0xS . Let z X∈  be such that 0z x>  and let Mz denote the σ-

algebra of all sets containing M0 and the sets of the form 

0,xS x x z∈ . 

Throughout this paper, unless otherwise mentioned, let 

( , , || ?||)E ≺  denote a partially ordered normed linear space. 

Two elements x and y in E are said to be comparable if either 

the relation  or x y y x≺ ≺ holds. A non-empty subset C of E 

is called a chain or totally ordered if all the elements of C are 

comparable. It is known that E is regular if {xn} is a non 

decreasing (resp. non increasing) sequence in E such that

*nx x→  as ,n → ∞ then *nx x≺ (resp. *nx x≻ ) for all

N.n∈  The conditions guaranteeing the regularity of E may 

be found in Heikkiländand Lakshmikantham [8] and the 

references therein. We need the following definitions (see 

Dhage [14] and the references therein) in what follows. 

Definition 3.1. A mapping :T E E→ is called isotone or 

non-decreasing if it preserves the order relation ,≺ that is, if 

x y≺ implies Tx Ty≺ for all , .x y E∈ Similarly, T is called 

nonincreasing if x y≺ implies Tx Ty≻ for all , .x y E∈ Finally, 

T is called monotonic or simply monotone if it is either non 

decreasing non increasing on E. 

Definition 3.2. A mapping :T E E→ is called partially 

continuous at a point a E∈ if for 0ε > there exists a 0δ >
such that || ||Tx Ta− < ε  whenever x is comparable to a and 

|| || .x a− < δ T called partially continuous on E if it is partially 

continuous at every point of it. It is clear that if T is partially 

continuous on E, then it is continuous on every chain C 

contained in E. 

Definition 3.3. A non-empty subset S of the partially 

ordered Banach space E is called partially bounded if every 

chain C in S is bounded. An operator T on a partially normed 

linear space E into itself is called partially bounded if T (E) is 

a partially bounded subset of E. T is called uniformly 

partially bounded if all chains C in T (E) are bounded by a 

unique constant. 

Definition 3.4. A non-empty subset S of the partially ordered 

Banach space E is called partially compact if every chain C in S 

is a relatively compact subset of E. A mapping :T E E→ is 

called partially compact if T (E) is a partially relatively compact 

subset of E. T is called uniformly partially compact if T is a 

uniformly partially bounded and partially compact operator on E. 

T is called partially totally bounded if for any bounded subset S 

of E, T(S) is a partially relatively compact subset of E. If T is 

partially continuous and partially totally bounded, then it is 

called partially completely continuous on E. 

Definition 3.5. An upper semi-continuous and monotone 

non decreasing function : R R+ +ψ → is called a D-function 

provided (0) 0.ψ = An operator :T E E→ is called partially 

nonlinear D-contraction if there exists a D-function ψ such 

that 

|| || (|| ||)Tx Ty x y− ≤ ψ −                                (6) 

For all comparable elements , ,x y E∈ where 0 ( )r r< ψ <
for r > 0. In particular, if ( ) , 0,r kr k Tψ = > is called a 
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partial Lipschitz operator with a Lipschitz constant k and 

more over, if 0 < k < 1, T is called a partial linear contraction 

on E with a contraction constant k. 

The Dhage iteration method or Dhage iteration principle 

embodied in the following applicable hybrid fixed point 

theorem of Dhage [12] in a partially ordered normed linear 

space is used as a key tool for our work contained in this 

paper. The details of the Dhage iteration method or principle 

is given in Dhage [14, 15], and the references therein. 

Theorem 3.1. Let ( , ,|| ?||)E ≺ be a regular partially ordered 

complete normed linear space such that every compact chain C 

of E. Let A,B: E E→ be two nondecreasing operators such that 

a) A is partially bounded and partially nonlinear D-

contraction, 

b) B is partially continuous and partially compact, and 

c) there exists an element 0x E∈ such that 0 0 0x Ax Bx+≺
 

or 0 0 0x Ax Bx+≻ . 

Then the operator equation Ax+ Bx= x has a solution x* in E 

and the sequence {xn} of successive iterations defined by 

xn+1 = Axn + Bxn, n = 0, 1,…, converges monotonically to 

x*. 

4. Main Result 

In this section, we prove an existence and approximation 

result for the AMDE (9) on a closed and bounded interval 

J=[a,b] under mixed partial Lipschitz and partial 

compactness type conditions on the nonlinearities involved in 

it. We place the AMDE (9) in the function space ( , )C J R  of 

continuous real-valued functions defined on J. We define a 

norm || · || and the order relation ≤ in ( , )C J R by 

|| || sup | ( ) |
t J

x x t
∈

=                                  (7) 

and  

( ) ( )x y x t y t≤ ⇔ ≤  for all t J∈               (8) 

Clearly, ( , )C J R is a Banach space with respect to above 

supremum norm and also partially ordered w. r. t. the above 

partially order relation ≤. It is known that the partially ordered 

Banach space ( , )C J R is regular and lattice so that every pair of 

elements of E has a lower and an upper bound in it. 

Consider the first order ordinary nonlinear abstract 

measure differential equation, 

[ ] 0

0

( , ( ) ), . ,

( ) ( ),

x

dp
f x p S a e x x z

d

p E q E E M

µ
µ

= ∈ 

= ∈ 

            (9) 

for all 0x x z∈
,
 where , : zf s R Rµ × →  are continuous 

functions. Where q is a given known vector measure, 
dp

dµ
 is 

a Radon-Nikodym derivative of p with respect to 

, : zf S R Rµ × → , and ( , ( ))xf x p S  is µ-integrable for each 

a( , )z zp c S M∈ . 

By a solution of equation (9) we mean a differentiable 

function ( , )z zp ca S M∈ that satisfies equation (9), where C 

(X,M) is the space of continuous real-valued functions 

defined on 0 .x z  The equation (9) has already been discussed 

for different aspects of the solutions using the usual Picard 

iteration method. See Bainov and Hristova [11] and the 

references therein for the details. In this paper we discuss the 

AMDE (9) for existence and approximation of solutions via a 

new approach based upon the Dhage iteration method. 

We need the following definition as follows. 

Definition 4.1. A function ( , )z zu ca S M∈  is said to be a 

lower solution of the AMDE (9) if it satisfies 

0

0

( , ( )),

( ) ( ),

x

du
f x p S x x z

d

p E q E E M

≤ ∈ 

= ∈ 

µ  

for all 
0 .x x z∈ Similarly, an upper solution ( , )z zv ca S M∈  to 

the AMDE(9) is defined on 0x z . 

We consider the following hypotheses as follows: 

(H1) There exists a real number 0λ >  such that the 

function ( , ( ))xx f x p S x+֏ λ  is monotone non-decreasing 

for each 
0 .x x z∈  

(H2) The AMDE(9) has a lower solution ( , )z zu ca S M∈ . 

(H3) There exists a constant K > 0 such that 

| ( , ( )) | ,xf x p S K≤ɶ  for all 0x x z∈  

Consider the following abstract measure differential 

equation 

0

0

( ) ( , ( )), ,

( ) ( ),

x x

dp
p S f x p S x x z

d

p E q E E M

+ = ∈ 

= ∈ 

ɶλ
µ                  (10) 

where : zf S R R× →ɶ  is defined by 

( , ( )) ( , ( )) ( ), 0.x x xf x p S f x p S p S= + λ λ >ɶ             (11) 

Remark 4.1. A vector measure ( , )z zu ca S M∈  is a solution 

of the equation (13) if and only if it is a solution of the 

equation (9) defined on 0 .x z . 

Lemma 4.1. Assume that hypothesis (H3) holds. Then a 

function ( , )z zu ca S M∈  is a solution of the AMDE (9) if and 

only if it is a solution of the nonlinear integral equation, 

0

0

( ) ( , ( ))

x
x x x

xp x x e e e f x p S dx− −= + ∫ ɶλ λ λ
             (12) 

for all 
0 .x x z∈  

Theorem 4.1. Assume that hypotheses (H1) through (H3) 
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hold. Then the AMDE (9) has a solution x* defined on 
0x z

and the sequence 1{ }n np ∞
=  of successive approximations 

defined by 

1 0 0

0

( ) ( , ( )) , ,

x
x x x

n np x x e e e f x p x dx x x z− −
+ = + ∈∫ ɶλ λ λ

   (13) 

where 0 0,x u x x z= ∈ , converges monotonically to x
*
. 

Proof. Set E = ca(Sz, Mz). Then, in view of Lemma 3.1, 

every compact chain C in E possesses the compatibility 

property with respect to the norm ||.|| and the order relation ≤  

in E. 

Define the operator T on E by 

~

0 0

0

( ) ( , ( )) , .

x
x x x

xTp x x e e e f x p S dx x x z− −= + ∈∫
λ λ λ

   (14) 

From the continuity of the integrals, it follows that T 

defines the functions :T E E→ . Now by Lemma 4.1, the 

AMDE (9) is equivalent to the operator equation 

0( ) ( ),Tp x p x x x z= ∈                                   (15) 

We shall show that the operator T satisfies all the 

conditions of Theorem 3.1. This is achieved in the series of 

following steps. 

Step I: T is a non decreasing operator on E. 

Let ,x y E∈  be such that x y≥ . Then by hypothesis (H1), 

we obtain 

0

0

0

0

( ) ( , ( ))

( , ( ))

( ),

x
x x x

x

x

x
x x x

y

x

Tp x x e e e f x p S dx

x e e e f x p S dx

Tp y

− −

− −

= +

≥ +

=

∫

∫

ɶ

ɶ

λ λ λ

λ λ λ  

for all 0x x z∈ . This shows that T is a non decreasing 

operator on E into E. 

Step II: T is a partially continuous operator on E. 

Let {pn} be a sequence in a chain C in E such that 

np p→  for all n N∈ . 

Then, by dominated convergence theorem, we have 

0

0

0

0

0

0

lim ( ) lim ( , ( ))

lim ( , ( ))

( , ( ))

( ),

x
x x x

n n x
n n

x
x x x

n x
n

x
x x x

n x

Tp x x e e e f x p S dx

x e e e f x p S dx

x e e e f x p S dx

Tp x

− −

→∞ →∞

− −

→∞

− −

 
= + 

  

 = +
  

 = +  

=

∫

∫

∫

ɶ

ɶ

ɶ

λ λ λ

λ λ λ

λ λ λ

 

for all 0x x z∈ . This shows that Tpn converges to Tp 

pointwise on 0x z . 

Next, we will show that { }nTp is an equicontinuous 

sequence of functions in E. Let 1 2 0,x x x z∈  be arbitrary with 

1 2x x< . Then 

( )

( )

2 1

2 1

1 2

2 1 2

1

2

2 1

1

2 1

0 0

0

0

1 2

| ( ) ( ) | ( , ( )) ( , ( ))

( , ( )) ( , ( ))

0

x x

x xx x
n n n x n x

x x

x x xx x
n x n x

x

xT
x x x x

x

Tp x Tp x e e f x p S dx e e f x p S dx

e e e f x p S dx e e f x p S dx

e e e K dx e K dx

as x x

λ λλ λ

λ λ λλ λ

λ λ λ λ

− −

− − −

− −

− = −

≤ − +

≤ − +

→ →

∫ ∫

∫ ∫

∫ ∫

ɶ ɶ

ɶ ɶ

 

uniformly for all n N∈ . This shows that the convergence 

nTp Tp→  is uniformly and hence T is a partially continuous 

operator on E into itself. 

Step III: T is a partially compact operator on E. 

Let C be an arbitrary chain in E. We show that T (C) is a 

uniformly bounded and equicontinuous set in E. First we 

show that T (C) is uniformly bounded. Let x C∈  be arbitrary. 

Then, 

0

0

0

0

0

0

0

| ( ) | ( , ( ))

| | | ( , ( )) | |

| |

| | ,

x
x x x

x

x
x

x

T
T

T

Tp x x e e e f x p S dx

x e f x p S dx

x e K dx

x e KT r

− −≤ +

≤ +

≤ +

≤ + =

∫

∫

∫

ɶ

ɶ

λ λ λ

λ

λ

λ

 

for all 0x x z∈ . Taking supremum over x, we obtain || ||Tx r≤  

for all x C∈ . Hence T is a uniformly bounded subset of E. 

Next, we will show that T (C) is an equicontinuous set in E. 

Let 1 2 0,x x x z∈  be arbitrary with 

x1 < x2. Then 

( )

( )

2 1

2 1

1 2

2 1 2

1

2

2 1

1

2 1

0 0

0

0

1 2

| ( ) ( ) | ( , ( )) ( , ( ))

( , ( )) ( , ( ))

0

x x

x xx x
x x

x x

x x xx x
x x

x

xT
x x x x

x

Tp x Tp x e e f x p S dx e e f x p S dx

e e e f x p S dx e e f x p S dx

e e e K dx e K dx

as x x

λ λλ λ

λ λ λλ λ

λ λ λ λ

− −

− − −

− −

− = −

≤ − +

≤ − +

→ →

∫ ∫

∫ ∫

∫ ∫

ɶ ɶ

ɶ ɶ

 

uniformly for all x C∈ . Hence T (C) is a compact subset of 

E and consequently T is a partially compact operator on E 

into itself. 

Step IV: u satisfies the operator inequality u Tu≤ . 

By hypothesis (H2), the AMDE (9) has a lower solution u. 

Then we have 
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0

( , ( ))),

(0) ,

x

du
f x u S

d

u x

≤ 

≤ 

µ                       (16) 

for all 0x x z∈ Adding ( )xu Sλ  on both sides of the first 

inequality in (16), we obtain 

0( ) ( , ( )) ( ),x x x

du
u S f x u S u S x x z

d
+ ≤ + ∈λ λ

µ
.    (17) 

Again, multiplying the above inequality (17) by xeλ , 

( )( ) ' ( , ( )).x x
x xe u S e f x u Sλ λ≤ ɶ

               (18) 

A direct integration of (18) from 0 to x yields 

0

0

( ) ( , ( )) ,

x
x x x

x xu S x e e e f x u S dx− −≤ + ∫ ɶλ λ λ
      (19) 

for all 0x x z∈ . From definition of the operator T it follows 

that 

( ) ( ),x xu S Tu S≤
 

for all 
0x x z∈ . Hence u Tu≤ . 

Thus T satisfies all the conditions of Theorem 3.1 and we 

apply it to conclude that the operator equation Tx = x has a 

solution. Consequently the integral equation and the AMDE 

(9) has a solution x
*
 defined on 0x z . Furthermore, the 

sequence {pn} of successive approximations defined by (1) 

converges monotonically to p
*
. Hence the proof. 

Remark 4.2. The conclusion of Theorem 4.1 also remains 

true for an upper solution ( , )z zv ca S M∈ . 

Example 4.1. Consider the following abstract differential 

equation, 

1
tan ( ) ( ),

(0) 1,

x x

dp
p S p s

d

x

− = − 

= 

µ           (20) 

for all 
0x x z∈  

Here, 1( , ( )) tan .xf x p S x x−= −  Clearly, the functions f is 

continuous on zS R× . The function f satisfies the hypothesis 

(H1) with λ = 1. Moreover, the function 
1( , ( )) tanxf x p S x−=ɶ  is bounded on zS R×  with bound 

2
K

π= and so the hypothesis (H3) is satisfied. 

Since for all ,x R∈ any function ( , )z zu ca S M∈ satisfying 

the linear differential equation 

( ) 2,

(0) 1,

x

dp
p S

d

x

+ = − 

= 

µ                            (21) 

is a lower solution of the AMDE (14) on 0x z . Because, in 

this case, we obtain 

1( ) tan ( ),

(0) 1,

x x

dp
u S u S

du

x

− + ≤ 

= 

                    (22) 

for all 0x x z∈ . Therefore, solving (21) for unknown function 

u, we get 

 0( ) 3 2, .xu x e x x z−= − ∈                         (23) 

Similarly, any function ( , )z zv ca S M∈ satisfying the linear 

differential equation 

 
( ) 2,

(0) 1,

x

dp
p S

d

x

+ = − 

= 

µ                             (24) 

is an upper solution of the AMDE (4.14) on 0 .x z  Solving the 

differential equation (4.18) for the unknown function v then 

we get 

0( ) 2 , .xv x e x x z−= − ∈                                      (25) 

Hence, we apply Theorem 4.1 and conclude that the 

AMDE (20) has a solution x
*
 defined on 0x z  and the 

sequence 1{ }n np ∞
= of successive approximations defined by 

1
1

0

( ) tan ( )

x
x x x

n n xp x e e e p S dx− − −
+ = + ∫         (26) 

for all 
0x x z∈ , where 0( ) 3 2, ,xp x e x x z−= − ∈  converges 

monotonically to x*. 

Remark 4.3. The existence of solutions x* of the AMDE 

(20) may be obtained under the assumption of existence of 

the upper solution v defined on 0 .x z  Here also we conclude 

that the AMDE (20) has a solution x* defined on 
0x z  and the 

sequence { }np  of successive approximations defined by (26) 

with 1 2 xx e−= −  converges monotonically to x*. 

5. Conclusion 

It is clear that the Dhage iteration method is a powerful 

tool for proving the existence and approximating results for 

nonlinear measure differential equations but with some 

limitations in Picard's method. It is very simple in nature for 

the solution under weaker partial Lipschitz and compactness 

conditions. 
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